Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Sa, ACL, Pereira, JMC, Gardner, RH (2007). Analysis of the relationship between spatial pattern and spectral detectability of areas burned in southern Africa using satellite data. INTERNATIONAL JOURNAL OF REMOTE SENSING, 28(16), 3583-3601.

Abstract
Fires in Africa affect atmospheric emissions and carbon sequestration, landscape patterns, and regional and global climatic conditions. Studies of these effects require accurate estimation of the extent of measurable fire events. The goal of this study was to assess the influence of burned area spatial patterns on the spectral detectability of burned areas. Six Landsat-7 ETM+ images from the southern Africa were used for burned area mapping and spatial pattern analysis, while contemporaneous MODIS 500 m spatial resolution images were used to measure the spectral detectability of burned areas. Using a 15 by 15 km sample quadrats analysis, we showed that above a burned area proportion threshold of approximately 0.5 the spectral detectability of burned areas increase due to the decrease in the number of mixed pixels. This was spatially related to the coalescence of burned patches and the decrease in the total burned area perimeter. Simple burned area shapes were found at the Botswana site, where the absence of tree cover and the presence of bright surfaces (soil and dry grass) enhanced the spectral contrast of the burned surfaces, thus enabling better estimates of burned area extent. At the Zambia and Congo sites, landscape fragmentation due to human activity and the presence of a tree vegetation layer, respectively, contribute to the presence of small burned area patches, which may remain undetectable using moderate spatial resolution satellite imagery, leading to less accurate burned area extent estimates.

DOI:

ISSN:
0143-1161

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page