Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Syvitski, JPM, Saito, Y (2007). Morphodynamics of deltas under the influence of humans. GLOBAL AND PLANETARY CHANGE, 57(4-Mar), 261-282.

Abstract
A consistent database was established to characterize key environmental factors known to control delta morphology. The database includes the location, basin morphology, fluvial and sediment discharge to the deltas, delta morphology, ocean energy, and shelf depth reached by the sub-aqueous delta. Fifty-one deltas were selected to cover the global parameter range of rivers entering all major oceans and coastal seas. Seasonal satellite images of the deltas were processed (IKONOS, SPOT, LANDSAT, and MODIS). Predictive statistical relationships were obtained, suitable for hypothesis testing or to constrain/verify numerical models used to simulate the evolution of coastal systems. The area of a delta is best predicted from average discharge, the total sediment load feeding the delta, and the offshore accommodation space. The gradient of a delta plain, measured from the apex of the delta to the coast along the main channel, is best predicted with a ratio of sediment supply to sediment retention, sediment concentration used as a proxy of delta plain sedimentation, and mean water discharge. Widths of distributary channels form a lognormal distribution, with the cumulative width of the river mouths directly related to the maximum discharge, tidal and wave energy. The grain size of topset deposits scales with the river length. Hundreds of millions of people occupy deltas and human engineering is now a major influence on the growth and evolution of many deltas, through control of the flow path of distributary channels, and mitigation of the seasonal flood wave with concomitant change in the delivery of sediment load. More and more deltas are moving away from their pre-Anthropocene morphology, as influenced by pristine sediment supply and sediment dispersal. (c) 2007 Elsevier B.V All rights reserved.

DOI:
10.1016/j.gloplacha.2006.12.001

ISSN:
0921-8181

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page