Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Nagler, PL, Glenn, EP, Kim, H, Emmerich, W, Scott, RL, Huxman, TE, Huete, AR (2007). Relationship between evapotranspiration and precipitation pulses in a semiarid rangeland estimated by moisture flux towers and MODIS vegetation indices. JOURNAL OF ARID ENVIRONMENTS, 70(3), 443-462.

Abstract
We used moisture Bowen ratio flux tower data and the enhanced vegetation index (EVI) from the moderate resolution imaging spectrometer (MODIS) on the Terra satellite to measure and scale evapotranspiration (ET) over sparsely vegetated grassland and shrubland sites in a semiarid watershed in southeastern Arizona from 2000 to 2004. The grassland tower site had higher mean annual ET (336 mm yr(-1)) than the shrubland tower site (266 mm yr(-1)) (P < 0.001). ET measured at the individual tower sites was strongly correlated with EVI (r = 0.80-0.94). ET was moderately correlated with precipitation (P), and only weakly correlated with net radiation or air temperature. The strong correlation between ET and EVI, as opposed to the moderate correlation with rainfall, suggests that transpiration (T) is the dominant process controlling ET at these sites. ET could be adequately predicted from EVI and P across seasons and tower sites (r(2) = 0.74) by a single multiple regression equation. The regression equation relating ET to EVI and P was used to scale ET over 25 km 2 areas of grassland and shrubland around each tower site. Over the study, ratios of T to ET ranged from 0.75 to 1.0. Winter rains stimulated spring ET, and a large rain event in fall, 2000, stimulated ET above T through the following year, indicating that winter rain stored in the soil profile can be an important component of the plants' water budget during the warm season in this ecosystem. We conclude that remotely sensed vegetation indices can be used to scale ground measurements of ET over larger landscape units in semiarid ranglelands, and that the vegetation communities in this landscape effectively harvest the available precipitation over a period of years, even though precipitation patterns are variably seasonally and interannually. (c) 2007 Elsevier Ltd. All rights reserved.

DOI:
10.1016/j.jaridenv.2006.12.026

ISSN:
0140-1963

NASA Home Page Goddard Space Flight Center Home Page