Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Li, ZL, Li, J, Menzel, WP, Schmit, TJ, Ackerman, SA (2007). Comparison between current and future environmental satellite imagers on cloud classification using MODIS. REMOTE SENSING OF ENVIRONMENT, 108(3), 311-326.

Future Satellite Imagers are expected to improve current ones on environmental and meteorological applications. In this study, an automatic classification scheme using radiance measurements with a clustering method is applied in an attempt to compare the capability on cloud classification by different sensors: AVHRR/3, the current GOES-12 Imager, SEVIRI, VIIRS, and ABI. The MODIS cloud mask is used as the initial classification. The results are analyzed with the help of true color and RGB composite images as well as other information about surface and cloud types. Results indicate that the future sensors (ABI and VIIRS) provide much better overall cloud classification capabilities than their corresponding current sensors (the current GOES-12 Imager and AVHRR/3) from the two chosen demonstration cases. However, for a specific class, it is not always true that more spectral bands result in better classification. In order to optimally use the spectral information, it is necessary to determine which bands are more sensitive for a specific class. Spatial resolution and the signal-to-noise ratio (SNR) of satellite sensors can significantly affect the classification. The 2.13 mu m band could be useful for thin low cloud detection and the 3.7 mu m band is useful for fresh snow detection. (C) 2006 Elsevier Inc. All rights reserved.



NASA Home Page Goddard Space Flight Center Home Page