Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Westra, T, De Wulf, RR (2007). Monitoring Sahelian floodplains using Fourier analysis of MODIS time-series data and artificial neural networks. INTERNATIONAL JOURNAL OF REMOTE SENSING, 28(8-Jul), 1595-1610.

Abstract
Fourier analysis of Moderate Resolution Image Spectrometer (MODIS) time-series data was applied to monitor the flooding extent of the Waza-Logone floodplain, located in the north of Cameroon. Fourier transform (FT) enabled quantification of the temporal distribution of the MIR band and three different indices: the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), and the Enhanced Vegetation Index (EVI). The resulting amplitude, phase, and amplitude variance images for harmonics 0 to 3 were used as inputs for an artificial neural network (ANN) to differentiate between the different land cover/land use classes: flooded land, dry land, and irrigated rice cultivation. Different combinations of input variables were evaluated by calculating the Kappa Index of Agreement (KIA) of the resulting classification maps. The combinations MIR/NDVI and MIR/EVI resulted in the highest KIA values. When the ANN was trained on pixels from different years, a more robust classifier was obtained, which could consistently separate flooded land from dry land for each year.

DOI:
10.1080/01431160600887698

ISSN:
0143-1161

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page