Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Latifovic, R, Pouliot, D (2007). Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record. REMOTE SENSING OF ENVIRONMENT, 106(4), 492-507.

Variability and trends in lake ice dynamics (i.e. lake ice phenology) are related to climate conditions. Climate influences the timing of lake ice melt and freeze onset, ice duration, and lake thermal dynamics that feedback to the climate system initiating further change. Phenology records acquired in a consistent manner and over long time periods are required to better understand variability and change in climate conditions and how changes impact lake processes. In this study, we present a new technique for extracting lake ice phenology events from historical satellite records acquired by the series of Advanced Very High Resolution Radiometer (AVHRR) sensors. The technique was used to extend existing in-situ measurements for 36 Canadian lakes and to develop records for 6 lakes in Canada's far north. Comparison of phenology events obtained from the AVHRR record and in-situ measurements show strong agreement (20 lakes, 180 cases) suggesting, with high confidence especially in the case of break-up dates, the use of these data as a complement to ground observations. Trend analysis performed using the combined in-situ and AVHRR record similar to 1950-2004 shows earlier break-up (average - 0.18 days/year) and later freeze-up (average 0.12 days/year) for the majority of lakes analyzed. Less confidence is given to freeze-up date results due to lower sun elevation during this period making extraction more difficult. Trends for the 20 year record in the far north showed earlier break-up (average 0.99 days/year) and later freeze-up (average 0.76 days/year). The established lake ice phenology database from the historical AVHRR image archive for the period from 1985 to 2004 will to a certain degree fill data gaps in the Canadian in-situ observation network. Furthermore, the presented extraction procedure is not sensor specific and will enable continual data update using all available satellite data provided from sensors such as NOAA/AVHRR, MetOp/AVHRR, MODIS, MERIS and SPOT/VGT. Crown Copyright (c) 2006 Published by Elsevier Inc. All rights reserved.



NASA Home Page Goddard Space Flight Center Home Page