Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Zhang, LF, Fujiwara, N, Furumi, S, Muramatsu, K, Daigo, M, Zhang, LP (2007). Assessment of the universal pattern decomposition method using MODIS and ETM plus data. INTERNATIONAL JOURNAL OF REMOTE SENSING, 28(2-Jan), 125-142.

The universal pattern decomposition method (UPDM) is a sensor-independent method in which each satellite pixel is expressed as the linear sum of fixed, standard spectral patterns for water, vegetation and soil. The same normalized spectral patterns can be used for different solar-reflected spectral satellite sensors. Supplementary patterns are included when necessary. The UPDM has been applied successfully to simulated data for Landsat/ETM +, Terra/MODIS, ADEOS-II/GLI and 92-band CONTINUE sensors using ground-measured data. This study validates the UPDM using MODIS and ETM + data acquired over the Three Gorges region of China. The reduced chi(2) values for selected area D, that with the smallest terrain influences, are 0.000409 (MODIS) and 0.000181 (ETM +), and the average linear regression factor between MODIS and ETM + is 1.0077, with root mean square (rms) value 0.0082. The linear regression factor for the vegetation index based on the UPDM (VIUPD) between MODIS and ETM + data for area D is 1.0089 with rms 0.0696. Both UPDM coefficients and VIUPD are sensor independent for the above sensors.



NASA Home Page Goddard Space Flight Center Home Page