Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Gilbert, M, Xiao, XM, Chaitaweesub, P, Kalpravidh, W, Premashthira, S, Boles, S, Slingenbergh, J (2007). "Avian influenza, domestic ducks and rice agriculture in Thailand". AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 119(4-Mar), 409-415.

Highly pathogenic avian influenza (HPAI) caused by H5N1 viruses has become a global scale problem which first emerged in southern China and from there spread to other countries in Southeast and East Asia, where it was first confirmed in end 2003. In previous work, geospatial analyses demonstrated that free grazing ducks played critical role in the epidemiology of the disease in Thailand in the winter 2004/2005, both in terms of HPAI emergence and spread. This study explored the geographic association between free grazing duck census counts and current statistics on the spatial distribution of rice crops in Thailand, in particular the crop calendar of rice production. The analysis was carried out using both district level rice statistics and rice distribution data predicted with the aid of remote sensing, using a rice-detection algorithm. The results indicated a strong association between the number of free grazing ducks and the number of months during which second-crop rice harvest takes place, as well as with the rice crop intensity as predicted by remote sensing. These results confirmed that free grazing duck husbandry was strongly driven by agricultural land use and rice crop intensity, and that this later variable can be readily predicted using remote sensing. Analysis of rice cropping patterns may provide an indication of the location of populations of free grazing ducks in other countries with similar mixed duck and rice production systems and less detailed duck census data. Apart from free ranging ducks and rice cropping, the role of hydrology and seasonality of wetlands and water bodies in the HPAI risk analysis is also discussed in relation to the presumed dry season aggregation of wild waterfowl and aquatic poultry offering much scope for virus transmission. (c) 2006 Elsevier B.V. All rights reserved.



NASA Home Page Goddard Space Flight Center Home Page