Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Potter, C, Klooster, S, Hiatt, S, Fladeland, M, Genovese, V, Gross, P (2007). Satellite-derived estimates of potential carbon sequestration through afforestation of agricultural lands in the United States. CLIMATIC CHANGE, 80(4-Mar), 323-336.

Abstract
Afforestation of marginal agricultural lands represents a promising option for carbon sequestration in terrestrial ecosystems. An ecosystem carbon model was used to generate new national maps of annual net primary production (NPP), one each for continuous land covers of 'forest', 'crop', and 'rangeland' over the entire U. S. continental area. Direct inputs of satellite greenness data from the Advanced Very High Resolution Radiometer (AVHRR) sensor into the NASA-CASA carbon model at 8-km spatial resolution were used to estimate spatial variability in monthly NPP and potential biomass accumulation rates in a uniquely detailed manner. The model predictions of regrowth forest production lead to a conservative national projection of 0.3 Pg C as potential carbon stored each year on relatively low-production crop or rangeland areas. On a regional level, the top five states for total crop afforestation potential were: Texas, Minnesota, Iowa, Illinois, and Missouri, whereas the top five states for total rangeland afforestation potential are: Texas, California, Montana, New Mexico, and Colorado. Afforestation at this level of intensity has the capacity to offset at least one-fifth of annual fossil fuel emission of carbon in the United States. These projected afforestation carbon gains also match or exceed recent estimates of the annual sink for atmospheric CO2 in currently forested area of the country.

DOI:
10.1007/s10584-006-9109-3

ISSN:
0165-0009

NASA Home Page Goddard Space Flight Center Home Page