Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Hill, MJ, Held, AA, Leuning, R, Coops, NC, Hughes, D, Cleugh, HA (2006). "MODIS spectral signals at a flux tower site: Relationships with high-resolution data, and CO2 flux and light use efficiency measurements". REMOTE SENSING OF ENVIRONMENT, 103(3), 351-368.

Abstract
In this study, spectral indices were calculated from single date HyMap (3 m; 126 bands), Hyperion (30 m; 242 bands), ASTER (15/30 m; 9 bands), and a time series of MODIS nadir BRDF-adjusted reflectance (NBAR; 1 km, 7 bands) for a study area surrounding the Tumbarumba flux tower site in eastern Australia. The study involved: a) the calculation of a range of physiologically-based vegetation indices from ASTER, HyMap, Hyperion and MOD43B NBAR imagery over the flux tower site; b) comparison across scales between HyMap, Hyperion and MODIS for the normalized difference water index (NDWI) and the Red-Green ratio; c) analysis of relationships between tower-based flux and light use efficiency (LUE) measurements and seasonal and climatic constraints on growth; and d) examination of relationships between fluxes, LUE and time series of NDVI, NDWI and Red-Green ratio. Strong seasonal patterns of variation were observed in NDWI and Red/Green ratio from MODIS NBAR. Correlations between fine (3 and 30 m) and coarse (1 km) scale indices for a small region around the flux tower site were moderately good for Red/Green ratio, but poor for NDWI. Hymap NDWI values for the understorey canopy were much lower than values for the tree canopy. MODIS NDWI was negatively correlated with CO2 fluxes during warm and cool seasons. The correlation indicated that surface reflectance, affected by a spectrally bright grassland understorey canopy, was decoupled from growth of trees with access to deep soil moisture. The application of physiologically-based indices at earth observation scale requires careful attention to applicability of band configurations, contribution of vegetation components to reflectance signals, mechanistic relationships between biochemical processes and spectral indexes, and incorporation of ancillary information into any analysis. (c) 2006 Elsevier Inc. All rights reserved.

DOI:
10.1016/j.rse.2005.06.015

ISSN:
0034-4257

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page