Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Nikolov, N, Zeller, K (2006). Efficient retrieval of vegetation leaf area index and canopy clumping factor from satellite data to support pollutant deposition assessments. ENVIRONMENTAL POLLUTION, 141(3), 539-549.

Canopy leaf area index (LAI) is an important structural parameter of the vegetation controlling pollutant uptake by terrestrial ecosystems. This paper presents a computationally efficient algorithm for retrieval of vegetation LAI and canopy clumping factor from satellite data using observed Simple Ratios (SR) of near-infrared to red reflectance. The method employs numerical inversion of a physics-based analytical canopy radiative transfer model that simulates the bi-directional reflectance distribution function (BRDF). The algorithm is independent of ecosystem type. The method is applied to 1-km resolution AVHRR satellite images to retrieve a geo-referenced data set of monthly LAI values for the conterminous USA. Satellite-based LAI estimates are compared against independent ground LAI measurements over a range of ecosystem types. Verification results suggest that the new algorithm represents a viable approach to LAI retrieval at continental scale, and can facilitate spatially explicit studies of regional pollutant deposition and trace gas exchange. (c) 2005 Elsevier Ltd. All rights reserved.



NASA Home Page Goddard Space Flight Center Home Page