Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Joiner, J, Vasilkov, AP (2006). First results from the OMI rotational Raman scattering cloud pressure algorithm. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 44(5), 1272-1282.

We have developed an algorithm to retrieve scattering cloud pressures and other cloud properties with the Aura Ozone Monitoring Instrument (OMI). The scattering cloud pressure is retrieved using the effects of rotational Raman scattering (RRS). It is defined as the pressure of a Lambertian surface that would produce the observed amount of RRS consistent with the derived reflectivity of that surface. The independent pixel approximation is used in conjunction with the Lambertian-equivalent reflectivity model to provide an effective radiative cloud fraction and scattering pressure in the presence of broken or thin cloud. The derived cloud pressures will enable accurate retrievals of trace gas mixing ratios, including ozone, in the troposphere within and above clouds. We describe details of the algorithm that will be used for the first release of these products. We compare our scattering cloud pressures with cloud-top pressures and other cloud properties from the Aqua Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument. OMI and MODIS are part of the so-called A-train satellites flying in formation within 30 min of each other. Differences between OMI and MODIS are expected because the MODIS observations in the thermal infrared are more sensitive to the cloud top whereas the backscattered photons in the ultraviolet can penetrate deeper into clouds. Radiative transfer calculations are consistent with the observed differences. The OMI cloud pressures are shown to be correlated with the cirrus reflectance. This relationship indicates that OMI can probe through thin or moderately thick cirrus to lower lying water clouds.



NASA Home Page Goddard Space Flight Center Home Page