Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Jiang, ZY, Huete, AR, Chen, J, Chen, YH, Li, J, Yan, GJ, Zhang, XY (2006). Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. REMOTE SENSING OF ENVIRONMENT, 101(3), 366-378.

The normalized difference vegetation index (NDVI) is the most widely used vegetation index for retrieval of vegetation canopy biophysical properties. Several studies have investigated the spatial scale dependencies of NDVI and the relationship between NDVI and fractional vegetation cover, but without any consensus on the two issues. The objectives of this paper are to analyze the spatial scale dependencies of NDVI and to analyze the relationship between NDVI and fractional vegetation cover at different resolutions based on linear spectral mixing models. Our results show strong spatial scale dependencies of NDVI over heterogeneous surfaces, indicating that NDVI values at different resolutions may not be comparable. The nonlinearity of NDVI over partially vegetated surfaces becomes prominent with darker soil backgrounds and with presence of shadow. Thus, the NDVI may not be suitable to infer vegetation fraction because of its nonlinearity and scale effects. We found that the scaled difference vegetation index (SDVI), a scale-invariant index based on linear spectral mixing of red and near-infrared reflectances, is a more suitable and robust approach for retrieval of vegetation fraction with remote sensing data, particularly over heterogeneous surfaces. The proposed method was validated with experimental field data, but further validation at the satellite level would be needed. (c) 2006 Elsevier Inc. All rights reserved.



NASA Home Page Goddard Space Flight Center Home Page