Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Hong, N, White, JG, Weisz, R, Crozier, CR, Gumpertz, ML, Cassel, DK (2006). Remote sensing-informed variable-rate nitrogen management of wheat and corn: Agronomic and groundwater outcomes. AGRONOMY JOURNAL, 98(2), 327-338.

Abstract
In-season, site-specific, variable-rate (SS) N management based on remote sensing (RS) may reduce N losses to groundwater while maintaining or increasing yield and N fertilizer-use efficiency. We compared in-season, RS-informed N management applied on a uniform, field-average (FA) or SS basis with the current uniform best management practice (BMP) based on Realistic Yield Expectations (RYE) in a typical 2-yr southeastern U.S. coastal plain rotation: winter wheat (Triticum aestivum L.)-double-crop soybean [Glycine max (L.) Merr.]-corn (Zea mays L.). Compared with the RYE-based BMP, RS-informed SS management achieved: (i) a maximum of 2.3 mg L-1 less groundwater NO,,N after 2001 wheat due to 39 kg ha(-1) less fertilizer N and a 25% greater harvest N ratio (N in grain or forage/total N applied); (ii) 370 kg ha(-1) more 2002 corn grain with 32 kg ha(-1) greater N applied, similar harvest N ratio, and 37 kg ha(-1) greater surplus N; (iii) 670 kg ha(-1) more 2003 wheat grain associated with 14 kg ha(-1) greater fertilizer N, 27% greater harvest N ratio, and 9 kg ha(-1) less surplus N. Excepting one corn FA treatment that received excessive N, RS-informed management produced equal or greater economic returns to N than RYE, and less surplus N for wheat. Treatments produced enduring effects on groundwater [NO3-N] consistent with agronomic results, but small relative to temporal [NO3-N] fluctuations that were positively correlated with water table elevation. To assess N management in leaching-prone soils, frequent, periodic groundwater monitoring during and after the cropping season appears essential.

DOI:
10.2134/argonj2005.0154

ISSN:
0002-1962

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page