Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Shamir, E, Georgakakos, KP (2006). Distributed snow accumulation and ablation modeling in the American River basin. ADVANCES IN WATER RESOURCES, 29(4), 558-570.

Abstract
A spatially distributed snow model procedure for estimating snow melt, snow water equivalent and snow cover area is formulated and tested with data from the American River basin in California's Sierra Nevada. An adaptation of the operational National Weather Service snow accumulation and ablation model is used for each model grid cell forced by spatially distributed precipitation and temperature data. The model was implemented with 6-hourly time steps on I km 2 grid cells for the snow season of 1999-2003. Temperature is spatially interpolated using the prevailing lapse rate and digital terrain elevation data. Precipitation is spatially interpolated using regional climatological analyses obtained from PRISM. Parameters that control snow melt are distributed using ground surface aspect. The model simulations are compared with data from 12 snow-sensors located in the basin and the daily 500-m snow cover extent product from the MODIS/Terra satellite mission. The results show that the distribution of snow pack over the area is generally captured. The snow pack quantity compared to snow gauges is well estimated in high elevations with increasing uncertainty in the snow pack at lower elevations. Sensitivity and uncertainty analyses indicate that the significant input uncertainty for precipitation and temperature is primarily responsible for model errors in lower elevations and near the snow line. The model is suitable for producing spatially resolved realistic snow pack simulations when forced with operationally available observed or predicted data. (C) 2005 Published by Elsevier Ltd.

DOI:
10.1016/j.advwatres.2005.06.010

ISSN:
0309-1708

NASA Home Page Goddard Space Flight Center Home Page