Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Bagan, H, Wang, QX, Watanabe, M, Yang, YH, Ma, JW (2005). Land cover classification from MODIS EVI times-series data using SOM neural network. INTERNATIONAL JOURNAL OF REMOTE SENSING, 26(22), 4999-5012.

Abstract
A high-dimensional dataset was built with time-series data of vegetation indexes derived from a Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) sensor used for land use/cover classification. The self-organizing map (SOM) neural network technique can reduce the dimensionality of high-dimensional data, yet keep the same topological characters in the low-dimension space after dimension reduction. In this paper, we first employed the SOM neural network technique to classify land cover types using a 17-dimensional dataset that was generated from 16-day interval MODIS Enhanced Vegetation Index (EVI) data with a spatial resolution of 500 in in eastern China during the growing period of plants. Then, we defined an unlabelled class of neuron. Pixels matched to this type of neuron were regarded as unclassified land cover types, so that we could remove the poorly classified areas. Finally, the classification results were compared with those of the maximum likelihood classification (MLC) method. Comparison showed that the accuracy of the former exceeded that of the latter in classifying a high-dimensional dataset.

DOI:
10.1080/01431160500206650

ISSN:
0143-1161

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page