Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Pace, G, Meloni, D, di Sarra, A (2005). Forest fire aerosol over the Mediterranean basin during summer 2003. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 110(D21), D21202.

Abstract
Observations at Lampedusa show that long-lasting intense episodes of fine (Angstrom exponent, alpha, > 1.5) light absorbing aerosol occurred in the central Mediterranean during summer 2003, along with exceptionally hot and dry conditions throughout continental Europe and the Mediterranean basin. The absorbing particles appear to be produced mostly by large-scale intense forest fires in southern Europe. In this paper Moderate Resolution Imaging Spectroradiometer (MODIS) observations are used to determine the spatial and temporal extent of the summer 2003 forest fire aerosol episode over the Mediterranean sea. MODIS observations are first compared to measurements obtained with a multifilter rotating shadowband radiometer, MFRSR, at Lampedusa in July and August 2003. Values of the optical depth, tau, at 550 nm show a good agreement (linear correlation coefficient of 0.67, slope of 0.85). Angstrom exponents retrieved from MODIS are larger than those from MFRSR at low values of alpha and are smaller than those from MFRSR at high values of alpha. In addition to Lampedusa, five other open sea locations representative of different sectors of the Mediterranean basin were chosen to study the evolution of the aerosol properties during July and August 2003. MODIS observations reveal that particles displaying alpha > 1.3 and relatively large aerosol optical depth are present at four out of the six locations for an extended period (11-16 days) in August. Trajectories ending at the four locations show that in all cases, air masses overpass active fires in southern Europe. MODIS observations between 2000 and 2004 show that the summer 2003 forest fire aerosol episode was the longest lasting and covered the largest area. Normally, summertime episodes lasted about 4-6 days and only covered two locations at a time. The aerosol optical properties observed at Lampedusa are used as input to a radiative transfer model to estimate the absorbing aerosol radiative effects. Aerosol radiative forcing in the 300-800 nm range and atmospheric heating rates are calculated assuming different aerosol vertical distributions. It is estimated that forest fire particles produce an increase in heating rate as large as 2.8 K/day at 20 degrees solar zenith angle at the altitude of the aerosol layer. This large heating may have increased the atmospheric stability that helped to maintain the anomalously hot and dry conditions during summer 2003.

DOI:
10.1029/2005JD005986

ISSN:
0148-0227

NASA Home Page Goddard Space Flight Center Home Page