Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Sakamoto, T, Yokozawa, M, Toritani, H, Shibayama, M, Ishitsuka, N, Ohno, H (2005). A crop phenology detection method using time-series MODIS data. REMOTE SENSING OF ENVIRONMENT, 96(4-Mar), 366-374.

Abstract
Information of crop phenology is essential for evaluating crop productivity and crop management. Therefore we developed a new method for remotely determining phenological stages of paddy rice. The method consists of three procedures: (i) prescription of multi-temporal MODIS/Terra data; (ii) filtering time-series Enhanced Vegetation Index (EVI) data by time-frequency analysis; and (iii) specifying the phenological stages by detecting the maximum point, minimal point and inflection point from the smoothed EVI time profile. Applying this method to MODIS data, we determined the planting date, heading date, harvesting date, and growing period in 2002. And we validated the performance of the method against statistical data in 30 paddy fields. As for the filtering, we adopted wavelet and Fourier transforms. Three types of mother wavelet (Daubechies, Symlet and Coiflet) were used in Wavelet transform. As the results of validation, the wavelet transform performed better than the Fourier transform. Specifically, the case using Coiflet (order=4) gave remarkably good results in determining phenological stages and growing periods. The root mean square errors of the estimated phenological dates against the statistical data were: 12.1 days for planting date, 9.0 days for heading date, 10.6 days for harvesting date, and 11.0 days for growing period. The method using wavelet transform with Coiflet (order=4) allows the determination of regional characteristics of rice phenology. We proposed this new method using the wavelet transform; Wavelet based Filter for determining Crop Phenology (WFCP). (c) 2005 Elsevier Inc. All rights reserved.

DOI:
10.1016/j.rse.2005.03.008

ISSN:
0034-4257

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page