Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Lobell, DB, Asner, GP (2004). Cropland distributions from temporal unmixing of MODIS data. REMOTE SENSING OF ENVIRONMENT, 93(3), 412-422.

Abstract
Knowledge of the distribution of crop types is important for land management and trade decisions, and is needed to constrain remotely sensed estimates of variables, such as crop stress and productivity. The Moderate Resolution Imaging Spectroradiometer (MODIS) offers a unique combination of spectral, temporal, and spatial resolution compared to previous global sensors, making it a good candidate for large-scale crop type mapping. However, because of subpixel heterogeneity, the application of traditional hard classification approaches to MODIS data may result in significant errors in crop area estimation. We developed and tested a linear unmixing approach with MODIS that estimates subpixel fractions of crop area based on the temporal signature of reflectance throughout the growing season. In this method, termed probabilistic temporal unmixing (PTU), endmember sets were constructed using Landsat data to identify pure pixels, and uncertainty resulting from endmember variability was quantified using Monte Carlo simulation. This approach was evaluated using Landsat classification maps in two intensive agricultural regions, the Yaqui Valley (YV) of Mexico and the Southern Great Plains (SGP). Performance of the mixture model varied depending on the scale of comparison, with R-2 ranging from roughly 50% for estimating crop area within individual pixels to greater than 80% for crop cover within areas over 10 km(2). The results of this study demonstrate the importance of subpixel heterogeneity in cropland systems, and the potential of temporal unmixing to provide accurate and rapid assessments of land cover distributions using coarse resolution sensors, such as MODIS. (C) 2004 Elsevier Inc. All rights reserved.

DOI:
10.1016/j.rse.2004.08.002

ISSN:
0034-4257

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page