Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Fang, HL, Liang, SL (2003). Retrieving leaf area index with a neural network method: Simulation and validation. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 41(9), 2052-2062.

Leaf area index (LAI) is a crucial biophysical parameter that is indispensable for many biophysical and climatic models. A neural network algorithm in conjunction with extensive canopy and atmospheric radiative transfer simulations is presented in this paper to estimate LAI from Landsat-7 Enhanced Thematic Mapper Plus data. Two schemes were explored; the first was based on surface reflectance, and the second on top-of-atmosphere (TOA) radiance. The implication of the second scheme is that atmospheric corrections are not needed for estimating the surface LAI. A soil reflectance index (SRI) was proposed to account for variable soil background reflectances. Ground-measured LAI data acquired at Beltsville, MD were used to validate both schemes. The results indicate that both methods can be used to estimate LAI accurately. The experiments also showed that the use of SRI is very critical.



FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page