Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Trishchenko, AP, Cihlar, J, Li, ZQ (2002). Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors. REMOTE SENSING OF ENVIRONMENT, 81(1), 1-18.

We report the results of a modeling study on the sensitivity of normalized difference vegetation index (NDVI) and surface reflectance to differences in instrument spectral response functions (SRF) for various Advanced Very High Resolution Radiometers (AVHRR) onboard the National Oceanic and Atmospheric Administration's (NOAA) satellites NOAA-6-16 as well as the Moderate Resolution Imaging Spectroradiometer (MODIS), the Vegetation sensor (VGT), and the Global Imager (GLI). Modeling results were validated against real satellite observations employing AVHRR/NOAA-14 and -15 and MODIS, with a very good agreement. It is shown that for identical atmospheric state and similar surface spectral reflectance, the NDVI and spectral reflectances are sensitive to the sensor's SRF. Relative to a reference SRF for AVHRR/NOAA-9, the differences in reflectance among the AVHRRs range from - 25% to 12% for visible channel (red) and from - 2% to 4% for near-infrared (NIR) channel. Absolute change in NDVI among various AVHRRs ranged from - 0.02 to 0.06. The most significant difference was observed for the AVHRR/3. Consistent results were obtained with the AVHRR sensors aboard the following afternoon satellites: NOAA-9, -11, and -12, whereas important discrepancies were found for other AVHRRs aboard NOAA-6 and -10 and especially those launched more recently (NOAA-15 and -16). Reflectance and NDVI measured by MODIS channels I and 2 also exhibit significant differences (up to 30-40%) relative to AVHRR. GLI and VGT have some specific features that should be taken into account when intercomparing surface or top of the atmosphere (TOA) reflectance as well as NDVI. Sensitivity of the SRF effect to variable atmospheric state (water vapor, aerosol, and ozone) was also investigated. Polynomial approximations are provided for bulk spectral correction with respect to AVHRR/NOAA-9. (C) 2002 Elsevier Science Inc. All rights reserved.



NASA Home Page Goddard Space Flight Center Home Page