Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Minnis, P, Nguyen, L, Doelling, DR, Young, DF, Miller, WF, Kratz, DP (2002). Rapid calibration of operational and research meteorological satellite imagers. Part I: Evaluation of research satellite visible channels as references. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 19(9), 1233-1249.

Operational meteorological satellites generally lack reliable onboard calibration systems for solar-imaging channels. Current methods for calibrating these channels and for normalizing similar channels on contemporaneous satellite imagers typically rely on a poorly calibrated reference source. To establish a more reliable reference instrument for calibration normalization, this paper examines the use of research satellite imagers that maintain their solar-channel calibrations by using onboard diffuser systems that rely on the sun as an absolute reference. The Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and the second Along-Track Scanning Radiometer (ATSR-2) on the second European Remote Sensing Satellite (ERS-2) are correlated with matched data from the eighth Geostationary Operational Environmental Satellite (GOES-8), the fifth Geostationary Meteorological satellite (GMS-5), and with each other to examine trends in the solar channels. VIRS data are also correlated with the Terra satellite's Moderate Resolution Imaging Spectroradiometer (MODIS) provisional data as a preliminary assessment of their relative calibrations. As an additional check on their long-term stability, the VIRS data are compared to the relevant corresponding broadband shortwave radiances of the Clouds and the Earth's Radiant Energy System (CERES) scanners on TRMM. No statistically significant trend in the calibration of the VIRS 0.65- and 1.64-mum channels could be detected from the comparisons with CERES data taken during 1998 and 2000. The VIRS-to-GOES-8 correlations revealed an annual degradation rate for the GOES-8 visible (0.67 mm) channel of similar to7.5% and an initial drop of 16% in the gain from the prelaunch value. The slopes in the GOES-8 visible-channel gain trend lines derived from VIRS data taken after January 1998 and ATSR-2 data taken between October 1995 and December 1999 differed by only 1%-2% indicating that both reference instruments are highly stable. The mean difference of 3%-4.8% between the VIRS-GOES-8 and ATSR-2-GOES-8 gains is attributed to spectral differences between ATSR-2 and VIRS and to possible biases in the ATSR-2 channel-2 calibration. A degradation rate of 1.3% per year found for the GMS-5 visible channel was confirmed by comparisons with earlier calibrations. The MODIS and VIRS calibrations agreed to within 21% to 3%. Some of the differences between VIRS and the provisional MODIS radiances can be explained by spectral differences between the two instruments. The MODIS measures greater reflectance than VIRS for bright scenes. Although both VIRS and ATSR-2 provide temporally stable calibrations, it is recommended that, at least until MODIS calibrations are finalized, VIRS should be used as a reference source for normalizing operational meteorological satellite imagers because of its broader visible filter.



FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page