Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Turner, DP, Gower, ST, Cohen, WB, Gregory, M, Maiersperger, TK (2002). Effects of spatial variability in light use efficiency on satellite-based NPP monitoring. REMOTE SENSING OF ENVIRONMENT, 80(3), 397-405.

Abstract
Light use efficiency (LUE) algorithms are a potentially effective approach to monitoring global net primary production (NPP) using satellite-borne sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS). However, these algorithms are applied at relatively coarse spatial resolutions 1 km, which may subsume significant heterogeneity in vegetation LUE (epsilon(n), g MJ(-1) and, hence, introduce error. To examine the effects of spatial heterogeneity on a LUE algorithm, imagery from the Advanced very High Resolution Radiometer (AVHRR) at 1-km resolution was used to implement a LUE approach for NTP estimation over a 25-km(2) area of corn (Zea mays L.) and soybean (Glycine max Merr.) in central Illinois, USA. Results from several E. formulations were compared with a NIPP reference surface based on measured NPPs and a high spatial resolution land cover surface derived from Landsat ETM+. Determination of E. based on measurements of biomass production and monitoring of absorbed photosynthetically active radiation (APAR) revealed that E of soybean was 68% of that for corn. When a LUE algorithm for estimating NTPP was implemented in the study area using the assumption of homogeneous cropland and the En for corn, the estimate for total biomass production was 126% of that from the NPP reference surface. Because of counteracting errors, total biomass production using the soybean epsilon(n) was closer (86%) to that from the NPP reference surface. Retention of high spatial resolution land cover to assign epsilon(n) resulted in a total NPP very similar to the reference NPP because differences in leaf phenology between the crop types were small except early in the growing season. These results suggest several alternative approaches to accounting for land cover heterogeneity in E. when implementing LUE algorithms at coarse resolution. (C) 2002 Elsevier Science Inc. All rights reserved.

DOI:

ISSN:
0034-4257

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page