Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Chopping, MJ (2001). Testing LiSKBRDF models over a semi-arid grassland region with visible and near-infrared ATSR-2 and AVHRR data. INTERNATIONAL JOURNAL OF REMOTE SENSING, 22(17), 3533-3552.

This paper assesses the capability of the Roujean and LiSparse-MODIS-RossThin linear semi-empirical kernel-driven (LiSK) bidirectional reflectance distribution function (BRDF) models to predict bidirectional reflectance at geometries other than those of the observations used to invert the model, when the models are inverted against a sparse set of angular samples from 21 orbits (3 19 August 1996) of the operational Advanced Very High Resolution Radiometers (AVHRRs) on NOAA TIROS series AM (morning) and PM (evening) satellites. Red ('visible') and near-infrared (NIR) spectral reflectance estimates acquired at 4:40 GMT on 14 August 1996 by the Along-Track Scanning Radiometer-2 (ATSR-2) sensor flown on the European Space Agency's ERS-2 satellite are used as reference data. The test area is a semi-arid grassland region in Inner Mongolia, P.R. China, bounded by 42.84 degrees -44.71 degreesN and 112.40 degrees -116.05 degrees E. The results show that in spite of the difficulties posed by such a task, LiSK models can be inverted against multiangular AVHRR observations to predict bidirectional reflectance at the acquisition geometry of the ATSR-2 with reasonable accuracy: the rms. error of the reflectance predictions made by both models is less than 4% for the nadir views and less than or equal to 6% in the forward views. These error values are less than one-half those provided by a 13 August 1996 AM AVHRR scene in the 0.65 mum channel and about one-seventh of those for the AVHRR scene in the 0.87 mum (NIR) channel, in both nadir and forward views.



NASA Home Page Goddard Space Flight Center Home Page