Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Hansen, MC, Defries, RS, Townshend, JRG, Sohlberg, R (2000). Global land cover classification at 1km spatial resolution using a classification tree approach. INTERNATIONAL JOURNAL OF REMOTE SENSING, 21(7-Jun), 1331-1364.

This paper on reports the production of a 1 km spatial resolution land cover classification using data for 1992-1993 from the Advanced Very High Resolution Radiometer (AVHRR). This map will be included as an at-launch product of the Moderate Resolution Imaging Spectroradiometer (MODIS) to serve as an input for several algorithms requiring knowledge of land cover type. The methodology was derived from a similar effort to create a product at 8 km spatial resolution, where high resolution data sets were interpreted in order to derive a coarse-resolution training data set. A set of 37 294 x 1 km pixels was used within a hierarchical tree structure to classify the AVHRR data into 12 classes. The approach taken involved a hierarchy of pair-wise class trees where a logic based on vegetation form was applied until all classes were depicted. Multitemporal AVHRR metrics were used to predict class memberships. Minimum annual red reflectance, peak annual Normalized Difference Vegetation Index (NDVI), and minimum channel three brightness temperature were among the most used metrics. Depictions of forests and woodlands, and areas of mechanized agriculture are in general agreement with other sources of information, while classes such as low biomass agriculture and high-latitude broadleaf forest are not. Comparisons of the final product with regional digital land cover maps derived from high-resolution remotely sensed data reveal general agreement, except for apparently poor depictions of temperate pastures within areas of agriculture. Distinguishing between forest and non-forest was achieved with agreements ranging from 81 to 92% for these regional subsets. The agreements for all classes varied from an average of 65% when viewing all pixels to an average of 82% when viewing only those 1 km pixels consisting of greater than 90% one class within the high-resolution data sets.



NASA Home Page Goddard Space Flight Center Home Page