Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Knyazikhin, Y, Martonchik, JV, Diner, DJ, Myneni, RB, Verstraete, M, Pinty, B, Gobron, N (1998). Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 103(D24), 32239-32256.

Abstract
The multiangle imaging spectroradiometer (MISR) instrument is designed to provide global imagery at nine discrete viewing angles and four visible/near-infrared spectral bands. This paper describes an algorithm for the retrieval of leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) from atmospherically corrected MISR data. The proposed algorithm is designed to utilize all the information provided by this instrument, using a two-step process. The first step involves a comparison of the retrieved spectral hemispherically integrated reflectances with those determined from the model which depend on biome type, canopy structure, and soil/understory reflectances. The biome/canopy/soil/understory models that pass this comparison test are subject to the second step, which is a comparison of their directional reflectances at the MISR angles to the retrieved spectral directional reflectances. This procedure, however, can produce multiple acceptable solutions. The measure theory is used to specify the most probable values of LAI and FPAR using the set of all acceptable solutions. Optimization of the retrieval technique for efficient global processing is discussed. This paper is the second of a two-part set describing a synergistic algorithm for producing global LAI and FPAR fields from canopy reflectance data provided by the MODIS (moderate resolution imaging spectroradiometer) and MISR instruments.

DOI:

ISSN:
0747-7309

NASA Home Page Goddard Space Flight Center Home Page