Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Harshvardhan, Ridgway, W, Ramaswamy, V, Freidenreich, SM, Batey, M (1998). Spectral characteristics of solar near-infrared absorption in cloudy atmospheres. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 103(D22), 28793-28799.

Theoretical and experimentally derived estimates of the atmospheric absorption of solar energy in the presence of clouds have been reported to be at variance for quite a long time. A detailed set of near-monochromatic computations of the reflectance, transmittance, and absorptance of a standard midlatitude atmosphere with embedded water clouds is used to identify spectral features in the solar near-infrared that can be utilized to study this discrepancy. The results are framed in terms of the cloud radiative forcing both at the surface and at the top of the atmosphere, and it is shown that water vapor windows are the most sensitive to variations in cloud optical properties and cloud placement in the vertical. The ratio of the cloud radiative forcing at the surface to that at the top of the atmosphere, R, varies from near zero in the band centers at small wavenumbers for high clouds to similar to 1 in the band centers at larger wavenumbers for low clouds and to values in excess of 2 in the water vapor windows at small wavenumbers. The possibility of using measurements from space with the future Moderate Resolution Imaging Spectroradiometer (MODIS) and simultaneous surface measurements is discussed. It is also shown that horizontal inhomogeneities in the cloud layers do not alter appreciably the estimates of the R factor, but areal mean cloud absorption is lower for an inhomogeneous cloud having the same mean liquid water as the corresponding homogeneous cloud.



NASA Home Page Goddard Space Flight Center Home Page