Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Wooster, MJ, Rothery, DA (1997). "Thermal monitoring of Lascar Volcano, Chile, using infrared data from the along-track scanning radiometer: A 1992-1995 time series". BULLETIN OF VOLCANOLOGY, 58(7), 566-579.

Abstract
Lascar Volcano (22 degrees 22'S, 67 degrees 44'W) is the most active volcano of the central Andes of northern Chile. Activity since 1984 has been characterised by periods of lava dome growth and decay within the active crater, punctuated by explosive eruptions. We present herein a technique for monitoring the high-temperature activity within the active crater using frequent measurements of emitted shortwave infrared (SWIR) radiation made by the spaceborne along-track scanning radiometer (ATSR). The ATSR is an instrument of low spatial resolution (pixels 1 km across) that shares certain characteristics with the MODIS instrument, planned for use as a volcano monitoring tool in the NASA EOS Volcanology Project. We present a comprehensive time series of over 60 cloud- and plume-free nighttime ATSR observations for 1992-1995, a period during which Lascar experienced its largest historical eruption, Variations in short wavelength infrared flux relate directly to changes in high-temperature surfaces within the active crater. From these data, interpretations can be made that supplement published field reports and that can document the presence and status of the lava dome during periods where direct, ground-based, observations are lacking. Our data agree with less frequent information collected from sensors with high spatial resolution, such as the Landsat thematic mapper (Oppenheimer et al. 1993) and are consistent with field observations and models that relate subsidence of the dome to subsequent explosive eruptions (Matthews et al., 1997). Most obviously, Lascar's major April 1993 eruption follows a period in which the magnitude of emitted shortwave infrared radiation fell by 90%, At this time subsidence of the 1991-1992 lava dome was reported by field observers and this subsidence is believed to have impeded the escape of hot volatiles and ultimately triggered the eruption (Smithsonian Institution 1993a). Extrapolating beyond the period for which field observations of the summit are available, our data show that the vulcanian eruption of 20 July 1995 occurred after a period of gradual increase in short wavelength infrared flux throughout 1994 and a more rapid flux decline during 1995. We attribute this additional: otherwise undocumented, cycle of increasing and decreasing SWIR radiance as most likely representing variations in degassing through fumaroles contained within the summit crater, Alternatively, it may reflect a cycle of dome growth and decay. The explosive eruption of 17 December 1993 appears to have followed a similar, but shorter, variation in SWIR flux, and we conclude that large explosive eruptions are more likely when the 1.6-mu m signal has fallen from a high to a low level. The ATSR instrument offers low-cost data at high temporal resolution. Despite the low spatial detail of the measurements, ATSR-type instruments can provide data that relate directly to the status of Lascar's lava dome and other high-temperature surfaces. We suggest that such data can therefore assist with predictions of eruptive behaviour, deduced from application of physical models of lava dome development at this and similar volcanoes.

DOI:

ISSN:
0258-8900

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page