Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Yuan, TL; Remer, LA; Pickering, KE; Yu, HB (2011). Observational evidence of aerosol enhancement of lightning activity and convective invigoration. GEOPHYSICAL RESEARCH LETTERS, 38, L04701.

Lightning activity over the West Pacific Ocean east of the Philippines is usually much less frequent than over the nearby maritime continents. However, in 2005 the Lightning Imaging Sensor (LIS) aboard the TRMM satellite observed anomalously high lightning activity in that area. In the same year the Moderate resolution Imaging Spectro-radiometer (MODIS) measured anomalously high aerosol loading. The high aerosol loading was traced to volcanic activity, and not to any factor linked to meteorology, disentangling the usual convolution between aerosols and meteorology. We show that in general lightning activity is tightly correlated with aerosol loadings at both inter-annual and biweekly time scales. We estimate that a similar to 60% increase in aerosol loading leads to more than 150% increase in lightning flashes. Aerosols increase lightning activity through modification of cloud microphysics. Cloud ice particle sizes are reduced and cloud glaciation is delayed to colder temperature when aerosol loading is increased. TRMM precipitation radar measurements indicate that anomalously high aerosol loading is associated with enhanced cloud mixed phase activity and invigorated convection over the maritime ocean. These observed associations between aerosols, cloud microphysics, morphology and lightning activity are not related to meteorological variables or ENSO events. The results have important implications for understanding the variability of lightning and resulting aerosol-chemistry interactions. Citation: Yuan, T., L. A. Remer, K. E. Pickering, and H. Yu (2011), Observational evidence of aerosol enhancement of lightning activity and convective invigoration, Geophys. Res. Lett., 38, L04701, doi:10.1029/2010GL046052.



NASA Home Page Goddard Space Flight Center Home Page