Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Mustafa, YT; Van Laake, PE; Stein, A (2011). Bayesian Network Modeling for Improving Forest Growth Estimates. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 49(2), 639-649.

Abstract
Estimating the contribution of the forests to carbon sequestration is commonly done by applying forest growth models. Such models inherently use field observations such as leaf area index (LAI), whereas a relevant information is also available from remotely sensed images. This paper aims to improve the LAI estimated from the forest growth model [physiological principals predicting growth (3-PG)] by combining these values with the LAI derived from the Moderate Resolution Imaging Spectrora-diometer (MODIS) satellite imagery. A Bayesian networks (BNs) approach addresses the bias in the 3-PG model and the noise of the MODIS images. A novel inference strategy within the BN has been developed in this paper to take care of the different structures of the inaccuracies in the two data sources. The BN is applied to the Speulderbos forest in The Netherlands, where the detailed data were available. This paper shows that the outputs obtained with the BN were more accurate than either the 3-PG or the MODIS estimate. It was also found that the BN is more sensitive to the variation of the LAI derived from MODIS than to the variation of the LAI 3-PG values. In this paper, we conclude that the BNs can improve the estimation of the LAI values by combining a forest growth model with satellite imagery.

DOI:
10.1109/TGRS.2010.2058581

ISSN:
0196-2892

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page