Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Xiao, ZQ; Liang, SL; Wang, JD; Jiang, B; Li, XJ (2011). Real-time retrieval of Leaf Area Index from MODIS time series data. REMOTE SENSING OF ENVIRONMENT, 115(1), 97-106.

Real-time/near real-time inversion of land surface biogeophysical variables from satellite observations is required to monitor rapid land surface changes, and provide the necessary input for numerical weather forecasting models and decision support systems. This paper develops a new inversion method for the real-time estimation of the Leaf Area Index (LAI) of land surfaces from MODIS time series reflectance data (MOD09A1). It consists of a series of procedures, including time series data smoothing, data quality control and real-time estimation of LAI. After the historical LAI time series is smoothed by a multi-step Savitzky-Golay filter to determine the upper LAI envelope, a Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model is used to derive the LAI climatology. Based on the climatology from the SARIMA model to evolve in time, a dynamic model is then constructed and used to provide the short-range forecast of LAI. Predictions from this model are used with Ensemble Kalman Filter (EnKF) techniques to recursively update biophysical variables as new observations arrive. The validation results produced using MODIS surface reflectance data and field-measured LAI data at eight BELMANIP sites show that the real-time inversion method is able to efficiently produce a relatively smooth LAI product. In addition, the accuracy is significantly improved over the MODIS LAI product. (C) 2010 Elsevier Inc. All rights reserved.



NASA Home Page Goddard Space Flight Center Home Page