Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Zubko, V; Leptoukh, GG; Gopalan, A (2010). Study of Data-Merging and Interpolation Methods for Use in an Interactive Online Analysis System: MODIS Terra and Aqua Daily Aerosol Case. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 48(12), 4219-4235.

Data merging with interpolation is a method of combining near-coincident satellite observations to provide complete global or regional maps for comparison with models and ground station observations. We investigate various methods and limitations of data merging (or data fusion), with and without interpolation, as a first step toward merging data sets archived in the National Aeronautics and Space Administration Goddard Earth Sciences Data and Information Services Center and made public through the Goddard Interactive Online Visualization and ANalysis Infrastructure (Giovanni) data portals. As a prototype for the data-merging algorithm, this paper uses daily global observations of aerosol optical thickness (AOT), as measured by the MODerate resolution Imaging Spectroradiometer onboard the Terra and Aqua satellites. The goal is to develop a very fast and accurate online method of data merging for implementation into Giovanni. We demonstrate three different methods for pure merging (without interpolation): simple arithmetic averaging (SAA), maximum likelihood estimate (MLE), and weighting by pixel counts. All three methods are roughly comparable, with the MLE (SAA) being slightly preferable when validating with respect to the AOT standard deviations (AOT means). To evaluate the merged product, we introduce two confidence functions, which characterize the percentage of the merged AOT pixels as a function of the relative deviation of the merged AOT from the initial Terra and Aqua AOTs. Eight combinations of merging-interpolation are applied to scenes with regular and irregular data gap patterns. Our results show that the merging-interpolation procedure can produce complete spatial fields with acceptable errors.



NASA Home Page Goddard Space Flight Center Home Page