Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Jin, YF; Randerson, JT; Goulden, ML (2011). Continental-scale net radiation and evapotranspiration estimated using MODIS satellite observations. REMOTE SENSING OF ENVIRONMENT, 115(9), 2302-2319.

Abstract
Evapotranspiration (ET) is a major pathway for water loss from many ecosystems, and its seasonal variation affects soil moisture and net ecosystem CO(2) exchange. We developed an algorithm to estimate ET using a semi-empirical Priestley-Taylor (PT) approach, which can be applied at a range of spatial scales. We estimated regional net radiation (R(net)) at monthly time scales using MODerate resolution Imaging Spectroradiometer (MODIS) albedo and land surface temperature. Good agreement was found between satellite-based estimates of monthly R(net) and field-measured R(net), with a RMSE of less than 30 Wm(-2). An adjustable PT coefficient was parameterized as a function of leaf area index and soil moisture based on observations from 27 AmeriFlux eddy covariance sites. The biome specific optimization using tower-based observations performed well, with a RMSE of 17 Wm(-2) and a correlation of 0.90 for predicted monthly latent heat. We implemented the approach within the hydrology module of the CASA biogeochemical model, and used it to estimate ET at a 1 km spatial resolution for the conterminous United States (CONUS). The RMSE of modeled ET was reduced to 21.1 mm mon(-1), compared to 27.1 mm mon(-1) in the original CASA model. The monthly ET rates averaged over the Mississippi River basin were similar to those derived using GRACE satellite measurements and river discharge data. ET varied substantially over the CONUS, with annual mean values of 110 +/- 76 mm yr(-1) in deserts, 391 +/- 176 mm yr(-1) in savannas and grasslands, and 840 +/- 234 mm yr(-1) in broadleaf forests. The PT coefficient was the main driver for the spatial variation of ET in arid areas, whereas R(net) controlled ET when mean annual precipitation was higher than approximately 400 mm yr(-1). (C) 2011 Elsevier Inc. All rights reserved.

DOI:
0034-4257

ISSN:
10.1016/j.rse.2011.04.031

NASA Home Page Goddard Space Flight Center Home Page