Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Ioannou, I; Gilerson, A; Gross, B; Moshary, F; Ahmed, S (2011). Neural network approach to retrieve the inherent optical properties of the ocean from observations of MODIS. APPLIED OPTICS, 50(19), 3168-3186.

Retrieving the inherent optical properties of water from remote sensing multispectral reflectance measurements is difficult due to both the complex nature of the forward modeling and the inherent non-linearity of the inverse problem. In such cases, neural network (NN) techniques have a long history in inverting complex nonlinear systems. The process we adopt utilizes two NNs in parallel. The first NN is used to relate the remote sensing reflectance at available MODIS-visible wavelengths (except the 678 nm fluorescence channel) to the absorption and backscatter coefficients at 442 nm (peak of chlorophyll absorption). The second NN separates algal and nonalgal absorption components, outputting the ratio of algal-to-nonalgal absorption. The resulting synthetically trained algorithm is tested using both the NASA Bio-Optical Marine Algorithm Data Set (NOMAD), as well as our own field datasets from the Chesapeake Bay and Long Island Sound, New York. Very good agreement is obtained, with R(2) values of 93.75%, 90.67%, and 86.43% for the total, algal, and nonalgal absorption, respectively, for the NOMAD. For our field data, which cover absorbing waters up to about 6 m(-1), R(2) is 91.87% for the total measured absorption. (C) 2011 Optical Society of America



NASA Home Page Goddard Space Flight Center Home Page