Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Li, WL; Lu, S; Fu, SM; Meng, XH; Nnamchi, HC (2011). Numerical simulation of fluxes generated by inhomogeneities of the underlying surface over the Jinta Oasis in Northwestern China. ADVANCES IN ATMOSPHERIC SCIENCES, 28(4), 887-906.

Abstract
Using land-use types derived from satellite remote sensing data collected by the EOS Moderate Resolution Imaging Spectroradiometer (EOS/MODIS), the mesoscale and turbulent fluxes generated by inhomogeneities of the underlying surface over the Jinta Oasis, northwestern China, were simulated using the Regional Atmospheric Modeling System (RAMS4.4). The results indicate that mesoscale circulation generated by land-surface inhomogeneities over the Jinta Oasis is more important than turbulence. Vertical heat fluxes and water vapor are transported to higher levels by mesoscale circulation. Mesoscale circulation also produces mesoscale synoptic systems and prevents water vapor over the oasis from running off. Mesoscale circulation transports moisture to higher atmospheric levels as the land-surface moisture over the oasis increases, favoring the formation of clouds, which sometimes leads to rainfall. Large-scale wind speed has a significant impact on mesoscale heat fluxes. During the active phase of mesoscale circulation, the stronger large-scale winds are associated with small mesoscale fluxes; however, background wind seems to intensify the turbulent sensible heat flux and turbulent latent heat flux. If the area of oasis is enlarged properly, mesoscale circulation will be able to transport moisture to higher levels, favoring the formation of rainfall in the oasis and protecting its "cold island" effect. The impact of irrigation on rainfall is important, and increasing irrigation across the oasis is necessary to protect the oasis.

DOI:
0256-1530

ISSN:
10.1007/s00376-010-0041-0

NASA Home Page Goddard Space Flight Center Home Page