Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Domenech, C; Wehr, T; Fischer, J (2011). Toward an Earth Clouds, Aerosols and Radiation Explore (EarthCARE) thermal flux determination: Evaluation using Clouds and the Earth's Radiant Energy System (CERES) true along-track data. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 116, D06115.

Abstract
The Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) mission developed by the European Space Agency and the Japan Aerospace Exploration Agency addresses the need to improve the understanding of the interactions between cloud, aerosol, and radiation processes. The broadband radiometer (BBR) instrument on board the EarthCARE spacecraft provides measurements of broadband reflected solar and emitted thermal radiances at the top of atmosphere (TOA) over the along-track satellite path at three fixed viewing zenith angles. The multiangular information provided by the BBR, combined with the spectral information from the EarthCARE's multispectral imager (MSI) can be exploited to construct accurate thermal radiance-to-flux conversion algorithms on the basis of radiative transfer modeling. In this study, the methodology to derive longwave (LW) fluxes from BBR and MSI data is described, and the performance of the LW BBR angular models is compared with the Clouds and the Earth's Radiant Energy System (CERES) Terra flux retrievals in order to evaluate the reliability of the BBR synthetic models when applied to satellite-based radiances. For this purpose, the BBR methodology proposed in this work is adapted to the CERES and the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument specifications, and new LW angular models for CERES are developed. According to plane-parallel simulations, the BBR LW flux uncertainty caused by flux inversion could be reduced up to 0.4 W m(-2). The intercomparison between CERES BBR-like adapted and CERES original angular models is performed over a BBR-like database of CERES true along track, and the averaged instantaneous retrievals agree to within 2 W m(-2).

DOI:
0148-0227

ISSN:
10.1029/2010JD015212

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page