Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Sharma, NCP; Barnes, JE; Kaplan, TB; Clarke, AD (2011). Coastal Aerosol Profiling with a Camera Lidar and Nephelometer. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 28(3), 418-425.

Abstract
A bistatic lidar configuration of a wide-angle camera (100 degrees) and vertically pointed laser (532 nm) was used to profile aerosols at a coastal site. Aerosol profiles were measured on two evenings from the surface through the boundary layer. The site, on the eastern tip of the Big Island of Hawaii, is influenced by both marine boundary layer aerosols and breaking waves. Two nephelometers, located at 7 and 25 m above sea level, were compared directly with the 0.5-m-altitude resolution of the camera lidar (clidar). At 7 m, changes in aerosol were tracked quite well by the clidar. At 25 m the aerosol was fairly constant and a useful comparison could only be made with averaged values. The clidar results showed a steep gradient (decreasing with altitude) in the aerosol extinction from 7 to about 35 m. The gradient continued to 200 m at a lower rate. This demonstrated the use of the clidar in characterizing the environment for the in situ aerosol sampling. Both a measured and a NASA Aerosol Robotic Network (AERONET)-derived aerosol phase function, representing similar marine conditions but from different locations, were used to convert the single-angle clidar scatter to extinction. The measured function gave the best fit to the near-surface nephelometer data. The extinction/backscatter ratio, derived by comparing the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth to the integrated clidar profile, was higher than the long-term average value from the AERONET aerosol phase function.

DOI:
0739-0572

ISSN:
10.1175/2010JTECHA1482.1

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page