Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Jones, TA; Christopher, SA (2011). Assessment of Temperature and Humidity Changes Associated With the September 2009 Dust Storm in Australia. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 8(2), 268-272.

Abstract
A historic dust storm affected the eastern portions of Australia between September 22 and 24, 2009, causing significant reductions in air quality and visibility. Using multiple satellite remote sensing data sets and meteorological information, we assess the distribution of dust aerosols and their potential effects on the Earth-atmosphere system. Spaceborne active lidar data showed that dust aerosols were located up to 2 km above the surface. The thickness of the dust plume (0.55-mu m aerosol optical thickness > 1.0) reduced surface visibility to below 2 km. Dew-point depressions of 20 degrees C or more occurred after passage of the dust plume, with decreases in surface temperature observed at some locations. Between the surface and 2-km level, temperature data show a cooling of similar to 10 degrees C in the hours after passage of the cold front along which dust aerosols had converged. However, much of the temperature change that occurred is a result of cold air advection behind the northward traveling plume. Radiative transfer modeling suggests that only up to 1 degrees C per day of this cooling is due to the decrease in solar radiation reaching the surface layer. Radiative transfer modeling also indicates a net warming of up to 2 degrees C per day within and above the dust layer, possibly offsetting some cooling aloft due to the cold front passage. Modeling results indicate that expected aerosol radiative effects to temperature are small compared to synoptic influences and are unlikely to be sampled in observations under this scenario since the magnitudes of these effects are quite small.

DOI:
1545-598X

ISSN:
10.1109/LGRS.2010.2063693

NASA Home Page Goddard Space Flight Center Home Page