Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Jackett, CJ; Turner, PJ; Lovell, JL; Williams, RN (2011). Deconvolution of MODIS imagery using multiscale maximum entropy. REMOTE SENSING LETTERS, 2(3), 179-187.

A multiscale maximum entropy method (MEM) for image deconvolution is implemented and applied to MODIS (moderate resolution imaging spectroradiometer) data to remove instrument point-spread function (PSF) effects. The implementation utilizes three efficient computational methods: a fast Fourier transform convolution, a wavelet image decomposition and an algorithm for gradient method step-size estimation that together enable rapid image deconvolution. Multiscale entropy uses wavelet transforms to implicitly include an image's two-dimensional structural information into the algorithm's entropy calculation. An evaluation using synthetic data shows that the deconvolution algorithm reduces the maximum individual pixel error from 90.01 to 0.34%. Deconvolution of MODIS data is shown to resolve significant features and is most effective in regions where there are large changes in radiance such as coastal zones or contrasting land covers.



NASA Home Page Goddard Space Flight Center Home Page