Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Peters, K; Quaas, J; Bellouin, N (2011). Effects of absorbing aerosols in cloudy skies: a satellite study over the Atlantic Ocean. ATMOSPHERIC CHEMISTRY AND PHYSICS, 11(4), 1393-1404.

Abstract
We present a method for deriving the radiative effects of absorbing aerosols in cloudy scenes from satellite retrievals only. We use data of 2005-2007 from various passive sensors aboard satellites of the "A-Train" constellation. The study area is restricted to the tropical-and subtropical Atlantic Ocean. To identify the dependence of the local planetary albedo in cloudy scenes on cloud liquid water path and aerosol optical depth (AOD), we perform a multiple linear regression. The OMI UV-Aerosolindex serves as an indicator for absorbing-aerosol presence. In our method, the aerosol influences the local planetary albedo through direct-(scattering and absorption) and indirect (Twomey) aerosol effects. We find an increase of the local planetary albedo (LPA) with increasing AOD of mostly scattering aerosol and a decrease of the LPA with increasing AOD of mostly absorbing aerosol. These results allow us to derive the direct aerosol effect of absorbing aerosols in cloudy scenes, with the effect of cloudy-scene aerosol absorption in the tropical-and subtropical Atlantic contributing (+21.2 +/- 11.1) x 10(-3) Wm(-2) to the global top of the atmosphere radiative forcing.

DOI:
1680-7316

ISSN:
10.5194/acp-11-1393-2011

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page