Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Brooks, EB; Thomas, VA; Wynne, RH; Coulston, JW (2012). Fitting the Multitemporal Curve: A Fourier Series Approach to the Missing Data Problem in Remote Sensing Analysis. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 50(9), 3340-3353.

With the advent of free Landsat data stretching back decades, there has been a surge of interest in utilizing remotely sensed data in multitemporal analysis for estimation of biophysical parameters. Such analysis is confounded by cloud cover and other image-specific problems, which result in missing data at various aperiodic times of the year. While there is a wealth of information contained in remotely sensed time series, the analysis of such time series is severely limited due to the missing data. This paper illustrates a technique which can greatly expand the possibilities of such analyses, a Fourier regression algorithm, here on time series of normalized difference vegetation indices (NDVIs) for Landsat pixels with 30-m resolution. It compares the results with those using the spatial and temporal adaptive reflectance fusion model (STAR-FM), a popular approach that depends on having MODIS pixels with resolutions of 250 m or coarser. STAR-FM uses changes in the MODIS pixels as a template for predicting changes in the Landsat pixels. Fourier regression had an R-2 of at least 90% over three quarters of all pixels, and it had the highest R-Predicted(2) values (compared to STAR-FM) on two thirds of the pixels. The typical root-mean-square error for Fourier regression fitting was about 0.05 for NDVI, ranging from 0 to 1. This indicates that Fourier regression may be used to interpolate missing data for multitemporal analysis at the Landsat scale, especially for annual or longer studies.



NASA Home Page Goddard Space Flight Center Home Page