Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Huang, JF; Hsu, NC; Tsay, SC; Holben, BN; Welton, EJ; Smirnov, A; Jeong, MJ; Hansell, RA; Berkoff, TA; Liu, ZY; Liu, GR; Campbell, JR; Liew, SC; Barnes, JE (2012). Evaluations of cirrus contamination and screening in ground aerosol observations using collocated lidar systems. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 117, D15204.

Abstract
Cirrus clouds, particularly subvisual high thin cirrus with low optical thickness, are difficult to screen in operational aerosol retrieval algorithms. Collocated aerosol and cirrus observations from ground measurements, such as the Aerosol Robotic Network (AERONET) and the Micro-Pulse Lidar Network (MPLNET), provide us with an unprecedented opportunity to systematically examine the susceptibility of operational aerosol products to cirrus contamination. Quality assured aerosol optical thickness (AOT) measurements were also tested against the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) vertical feature mask (VFM) and the Moderate Resolution Imaging Spectroradiometer (MODIS) thin cirrus screening parameters for the purpose of evaluating cirrus contamination. Key results of this study include: (1) quantitative evaluations of data uncertainties in AERONET AOT retrievals are conducted; although AERONET cirrus screening schemes are successful in removing most cirrus contamination, strong residuals displaying strong spatial and seasonal variability still exist, particularly over thin cirrus prevalent regions during cirrus peak seasons; (2) challenges in matching up different data for analysis are highlighted and corresponding solutions proposed; and (3) estimates of the relative contributions from cirrus contamination to aerosol retrievals are discussed. The results are valuable for better understanding and further improving ground aerosol measurements that are critical for aerosol-related climate research.

DOI:
0148-0227

ISSN:
10.1029/2012JD017757

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page