Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Bhandari, S; Phinn, S; Gill, T (2012). Preparing Landsat Image Time Series (LITS) for Monitoring Changes in Vegetation Phenology in Queensland, Australia. REMOTE SENSING, 4(6), 1856-1886.

Abstract
Time series of images are required to extract and separate information on vegetation change due to phenological cycles, inter-annual climatic variability, and long-term trends. While images from the Landsat Thematic Mapper (TM) sensor have the spatial and spectral characteristics suited for mapping a range of vegetation structural and compositional properties, its 16-day revisit period combined with cloud cover problems and seasonally limited latitudinal range, limit the availability of images at intervals and durations suitable for time series analysis of vegetation in many parts of the world. Landsat Image Time Series (LITS) is defined here as a sequence of Landsat TM images with observations from every 16 days for a five-year period, commencing on July 2003, for a Eucalyptus woodland area in Queensland, Australia. Synthetic Landsat TM images were created using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm for all dates when images were either unavailable or too cloudy. This was done using cloud-free scenes and a MODIS Nadir BRDF Adjusted Reflectance (NBAR) product. The ability of the LITS to measure attributes of vegetation phenology was examined by: (1) assessing the accuracy of predicted image-derived Foliage Projective Cover (FPC) estimates using ground-measured values; and (2) comparing the LITS-generated normalized difference vegetation index (NDVI) and MODIS NDVI (MOD13Q1) time series. The predicted image-derived FPC products (value ranges from 0 to 100%) had an RMSE of 5.6. Comparison between vegetation phenology parameters estimated from LITS-generated NDVI and MODIS NDVI showed no significant difference in trend and less than 16 days (equal to the composite period of the MODIS data used) difference in key seasonal parameters, including start and end of season in most of the cases. In comparison to similar published work, this paper tested the STARFM algorithm in a new (broadleaf) forest environment and also demonstrated that the approach can be used to form a time series of Landsat TM images to study vegetation phenology over a number of years.

DOI:
2072-4292

ISSN:
10.3390/rs4061856

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page