Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Liu, C; Ray, S; Hooker, G; Friedl, M (2012). FUNCTIONAL FACTOR ANALYSIS FOR PERIODIC REMOTE SENSING DATA. ANNALS OF APPLIED STATISTICS, 6(2), 601-624.

Abstract
We present a new approach to factor rotation for functional data. This is achieved by rotating the functional principal components toward a predefined space of periodic functions designed to decompose the total variation into components that are nearly-periodic and nearly-aperiodic with a predefined period. We show that the factor rotation can be obtained by calculation of canonical correlations between appropriate spaces which make the methodology computationally efficient. Moreover, we demonstrate that our proposed rotations provide stable and interpretable results in the presence of highly complex covariance. This work is motivated by the goal of finding interpretable sources of variability in gridded time series of vegetation index measurements obtained from remote sensing, and we demonstrate our methodology through an application of factor rotation of this data.

DOI:
1932-6157

ISSN:
10.1214/11-AOAS518

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page