Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Heidinger, AK; Evan, AT; Foster, MJ; Walther, A (2012). A Naive Bayesian Cloud-Detection Scheme Derived from CALIPSO and Applied within PATMOS-x. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 51(6), 1129-1144.

The naive Bayesian methodology has been applied to the challenging problem of cloud detection with NOAA's Advanced Very High Resolution Radiometer (AVHRR). An analysis of collocated NOAA-18/AVHRR and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)/Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations was used to automatically and globally derive the Bayesian classifiers. The resulting algorithm used six Bayesian classifiers computed separately for seven surface types. Relative to CALIPSO, the final results show a probability of correct detection of roughly 90% over water, deserts, and snow-free land; 82% over the Arctic; and below 80% over the Antarctic. This technique is applied within the NOAA Pathfinder Atmosphere's Extended (PATMOS-x) climate dataset and the Clouds from AVHRR Extended (CLAVR-x) real-time product generation system. Comparisons of the PATMOS-x results with those from International Satellite Cloud Climatology Project (ISCCP) and Moderate Resolution Imaging Spectroradiometer (MODIS) indicate close agreement with zonal mean differences in cloud amount being less than 5% over most zones. Most areas of difference coincided with regions where the Bayesian cloud mask reported elevated uncertainties. The ability to report uncertainties is a critical component of this approach.



NASA Home Page Goddard Space Flight Center Home Page