Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

He, T; Liang, SL; Wang, DD; Wu, HY; Yu, YY; Wang, JD (2012). Estimation of surface albedo and directional reflectance from Moderate Resolution Imaging Spectroradiometer (MODIS) observations. REMOTE SENSING OF ENVIRONMENT, 119, 286-300.

Abstract
Land surface albedo is one of the key geophysical variables controlling the surface radiation budget. In recent years, land surface albedo products have been generated using data from various satellites. However, some problems exist in those products due to either the failure of the current retrieving procedures resulting from persistent clouds and/or abrupt surface changes, or the reduced temporal or spatial coverage, which may limit their applications. Rapidly generated albedo products that help reduce the impacts of cloud contamination and improve the capture of events such as ephemeral snow and vegetation growth are in demand. In this study, we propose a method for estimating the land surface albedo from Moderate Resolution Imaging Spectroradiometer (MODIS) data using a short temporal window. Instead of executing the atmospheric correction first and then fitting the surface reflectance in the current MODIS albedo procedure, the atmospheric properties (e.g., aerosol optical depth) and surface properties (e.g., surface bidirectional reflectance) were estimated simultaneously. Validations were carried out using various data sources including ground measurements (e.g., from the Surface Radiation (SURFRAD) Network and Greenland Climate Network (GC-Net)) and MODIS AERONET-based Surface Reflectance Validation Network (MODASRVN) data. The results showed comparable albedo estimates with both MODIS data and ground measurements, and the MODASRVN instantaneous surface reflectance was in good agreement with the reflectance estimation from our method. Aerosol optical depth (ADD) retrievals over SURFRAD and MODASRVN sites were also compared with ground measurements. Validation results showed estimation accuracies similar to those of MODIS aerosol products. (C) 2012 Elsevier Inc. All rights reserved.

DOI:
0034-4257

ISSN:
10.1016/j.rse.2012.01.004

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page