Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Peng, J; Liu, ZH; Liu, YH; Wu, JS; Han, YA (2012). Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst Exponent. ECOLOGICAL INDICATORS, 14(1), 28-39.

As one of the most sensitive areas responding to global environmental change, especially global climate change, Qinghai-Tibet Plateau has been recognized as a hotspot for coupled studies on global terrestrial ecosystem change and global climate change. As an important component of terrestrial ecosystems, vegetation dynamic has become one of the key issues in global environmental change, and numerous case studies have been conducted on vegetation dynamic trend in different study periods. However, few are focused on the quantitative analysis of the consistency of vegetation dynamic trends after the study periods. In the study, taking Qinghai-Tibet Plateau as a case, vegetation dynamic trend during 1982-2003 were analyzed, with the application of the method of linear regression analysis. The results showed that, vegetation dynamics in Qinghai-Tibet Plateau experienced a significant increasing as a whole, with nearly 50% forest degradation in the study period. And among the 7 kinds of vegetation types, the change of forest was the most fluctuant with desert the least one. Furthermore, the consistency of vegetation dynamic trends after the study period, was quantified using Hurst Exponent and the method of R/S analysis. The results showed high consistency of future vegetation dynamic trends for the whole plateau, and inconsistent areas were mainly meadow and steppe distributed in the middle or east of the plateau. It was also convinced that, vegetation dynamic trends in the study area were significantly influenced by topography, especially the elevation. (C) 2011 Elsevier Ltd. All rights reserved.



NASA Home Page Goddard Space Flight Center Home Page