Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Zampieri, M; Serpetzoglou, E; Anagnostou, EN; Nikolopoulos, EI; Papadopoulos, A (2012). Improving the representation of river-groundwater interactions in land surface modeling at the regional scale: Observational evidence and parameterization applied in the Community Land Model. JOURNAL OF HYDROLOGY, 420, 72-86.

Abstract
Groundwater is an important component of the hydrological cycle, included in many land surface models to provide a lower boundary condition for soil moisture, which in turn plays a key role in the land-vegetation-atmosphere interactions and the ecosystem dynamics. In regional-scale climate applications land surface models (LSMs) are commonly coupled to atmospheric models to close the surface energy, mass and carbon balance. LSMs in these applications are used to resolve the momentum, heat, water and carbon vertical fluxes, accounting for the effect of vegetation, soil type and other surface parameters, while lack of adequate resolution prevents using them to resolve horizontal sub-grid processes. Specifically, LSMs resolve the large-scale runoff production associated with infiltration excess and sub-grid groundwater convergence, but they neglect the effect from loosing streams to groundwater. Through the analysis of observed data of soil moisture obtained from the Oklahoma Mesoscale Network stations and land surface temperature derived from MODIS we provide evidence that the regional scale soil moisture and surface temperature patterns are affected by the rivers. This is demonstrated on the basis of simulations from a land surface model (i.e., Community Land Model - CLM, version 3.5). We show that the model cannot reproduce the features of the observed soil moisture and temperature spatial patterns that are related to the underlying mechanism of reinfiltration of river water to groundwater. Therefore, we implement a simple parameterization of this process in CLM showing the ability to reproduce the soil moisture and surface temperature spatial variabilities that relate to the river distribution at regional scale. The CLM with this new parameterization is used to evaluate impacts of the improved representation of river-groundwater interactions on the simulated water cycle parameters and the surface energy budget at the regional scale. (C) 2011 Elsevier B.V. All rights reserved.

DOI:
0022-1694

ISSN:
10.1016/j.jhydrol.2011.11.041

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page