Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Caccamo, G; Chisholm, LA; Bradstock, RA; Puotinen, ML (2012). Using remotely-sensed fuel connectivity patterns as a tool for fire danger monitoring. GEOPHYSICAL RESEARCH LETTERS, 39, L01302.

Spatial connectivity of areas of dry fuels is considered a significant influence on the incidence of large fires. Precipitation patterns can dynamically affect fuel connectivity through controls on the distribution of dry fuels. Spatio-temporal monitoring of precipitation-driven variations in dry fuel connectivity patterns could therefore offer the potential to monitor fire danger. In this paper we present an innovative graph theoretic-based approach to monitor fire danger using remotely sensed patterns of dry fuel connectivity. We analysed the temporal evolution of dry fuel connectivity in south-eastern Australia during recent fire seasons. The analysis showed that rapid changes in the connectivity of dry fuels determine the pre-conditions for major fires. We found that large fires affected highly connected dry portions of the landscape, confirming the potential of this approach to monitor the temporal evolution of fire danger. Citation: Caccamo, G., L. A. Chisholm, R. A. Bradstock, and M. L. Puotinen (2012), Using remotely-sensed fuel connectivity patterns as a tool for fire danger monitoring, Geophys. Res. Lett., 39, L01302, doi:10.1029/2011GL050125.



NASA Home Page Goddard Space Flight Center Home Page