Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Papadimas, CD; Hatzianastassiou, N; Matsoukas, C; Kanakidou, M; Mihalopoulos, N; Vardavas, I (2012). The direct effect of aerosols on solar radiation over the broader Mediterranean basin. ATMOSPHERIC CHEMISTRY AND PHYSICS, 12(15), 7165-7185.

Abstract
For the first time, the direct radiative effect (DRE) of aerosols on solar radiation is computed over the entire Mediterranean basin, one of the most climatically sensitive world regions, using a deterministic spectral radiation transfer model (RTM). The DRE effects on the outgoing short-wave radiation at the top of atmosphere (TOA), DRETOA, on the absorption of solar radiation in the atmospheric column, DREatm, and on the downward and absorbed surface solar radiation (SSR), DREsurf and DREnetsurf, respectively, are computed separately. The model uses input data for the period 2000-2007 for various surface and atmospheric parameters, taken from satellite (International Satellite Cloud Climatology Project, ISCCP-D2), Global Reanalysis projects (National Centers for Environmental Prediction - National Center for Atmospheric Research, NCEP/NCAR), and other global databases. The spectral aerosol optical properties (aerosol optical depth, AOD, asymmetry parameter, g(aer) and single scattering albedo, omega(aer)), are taken from the MODerate resolution Imaging Spectroradiometer (MODIS) of NASA (National Aeronautics and Space Administration) and they are supplemented by the Global Aerosol Data Set (GADS). The model SSR fluxes have been successfully validated against measurements from 80 surface stations of the Global Energy Balance Archive (GEBA) covering the period 2000-2007. A planetary cooling is found above the Mediterranean on an annual basis (regional mean DRETOA = -2.4 W m(-2)). Although a planetary cooling is found over most of the region, of up to -7 W m(-2), large positive DRETOA values (up to +25 W m(-2)) are found over North Africa, indicating a strong planetary warming, and a weaker warming over the Alps (+0.5 W m(-2)). Aerosols are found to increase the absorption of solar radiation in the atmospheric column over the region (DREatm = +11.1 W m(-2)) and to decrease SSR (DREsurf = -16.5 W m(-2) and DREnetsurf - 13.5 W m(-2)) inducing thus significant atmospheric warming and surface radiative cooling. The calculated seasonal and monthly DREs are even larger, reaching -25.4 W m(-2) (for DREsurf). Within the range of observed natural or anthropogenic variability of aerosol optical properties, AOD seems to be the main responsible parameter for modifications of regional aerosol radiative effects, which are found to be quasi-linearly dependent on AOD, omega(aer) and g(aer).

DOI:
1680-7316

ISSN:
10.5194/acp-12-7165-2012

NASA Home Page Goddard Space Flight Center Home Page